Direct and Indirect Variation

Variation, in general, will concern two variables; say height and weight of a person, and how, when one of these changes, the other might be expected to change.

- We have direct variation if the two variables change in the same sense; i.e. if one increases, so does the other.
- We have indirect variation if one going up causes the other to go down. An example of this might be speed and time to do a particular journey; so the higher the speed, the shorter the time.

Normally we let x be the independent variable, and y the dependent variable, so that a change in x produces a change in y. For example, if x is number of motor cars on the road, and y the number of accidents; then we expect an increase in x to cause an increase in y. (This obviously ceases to apply if number of cars is so large that they are all stationary in a traffic jam.)

Direct Variation

When x and y are directly proportional, then doubling x will double the value of y; and if we divide these variables we get a constant result. Since if $\frac{y}{x}=k$ then $\frac{2 y}{2 x}=k$ where k is called the constant of proportionality.

We could also write this $y=k x$. Thus if I am given the value of x, I multiply this number by k to find the value of y.

Example: Given that y and x are directly proportional, and $y=2$ when $x=5$, find the value of when $x=15$.

We first find value of k, using $\frac{y}{x}=k . \rightarrow \frac{2}{5}=k$

Now use this constant value in the equation $y=k x$ for situation when $x=15$.

$$
y=\frac{2}{5} \bullet 15 \rightarrow=\frac{30}{5}=6
$$

If you want to do this quickly in your head, you could say x has been multiplied by a factor 3 (going from 5 to 15), so y must also go up by a factor of 3 . That means y goes from 2 to 6 .

Direct and Indirect Variation

Indirect Variation.

We gave an example of inverse proportion above, namely speed and time for a particular journey.

In this case, if you double the speed, you halve the time. So the product, speed x time $=$ constant. In general, if x and y are inversely proportional, then the product $x y$ will be constant.

$$
x y=k \text { or } y=\frac{k}{x}
$$

Example: If it takes 4 hours at an average speed of $90 \frac{\mathrm{~km}}{\mathrm{hr}}$ to do a certain journey, how long would it take at $120 \frac{\mathrm{~km}}{\mathrm{hr}}$?
$k=$ speed \cdot time $=90 \cdot 4=360(k$ in this case is the distance. $)$
Then time $=\frac{k}{\text { speed }}=\frac{360}{120}=3$ hours.

To do this in your head, you could say that speed has changed by a factor $\frac{3}{4}$, so time must change by a factor, $\frac{3}{4}$. However, for the usual type of problem, go through the steps I outlined above.

I hope these examples have made the idea of variation (both direct and inverse) reasonably clear.
From Ask Dr.Math @ MathForum.com

