\qquad

Study Guide

Solving Compound Inequalities

A compound inequality consists of two inequalities that are connected by the words and or or. A compound inequality containing and is true only if both inequalities are true. Its graph is the intersection of the graphs of the two inequalities. A compound inequality containing or is true if one or more of the inequalities is true. Its graph is the union of the graphs of the two inequalities.

Example 1: $x>-3$ and $x \leq 4$

The solution set, shown in the bottom graph, is $\{x \mid-3<x \leq 4\}$.

Example 2: $t \geq 8$ or $t<5$

The solution set is
$\{t \mid t \geq 8$ or $t<5\}$.

Sometimes it is better to first solve each inequality and then graph the solution. Study the examples below.

Example 3: $-3 \leq p-5<2$
$-3 \leq p-5 \quad$ and $\quad p-5<2$
$-3+5 \leq p-5+5 \quad p-5+5<2+5$
$2 \leq p \quad p<7$

The solution set is $\{p \mid 2 \leq p<7\}$.

Example 4: $2 a+1<11$ or $a>3 a+2$
$2 a+1<11 \quad$ or $\quad a>3 a+2$
$2 a+1-1<11-1 \quad a-3 a>3 a-3 a+2$

$$
2 a<10 \quad-2 a>2
$$

$$
\frac{2 a}{2}<\frac{10}{2} \quad \frac{-2 a}{-2}>\frac{2}{-2}
$$

$$
a<5 \quad a<-1
$$

The solution set is $\{a \mid a \leq 5\}$.

Graph the solution set of each compound inequality.

1. $b>-1$ and $b \leq 3$
2. $y \leq-4$ or $y>0$

$\stackrel{1}{1}$	1	1	1	1

3. $2 \geq q \geq-5$

Solve each compound inequality. Then graph the solution set.
4. $2 x+4 \leq 6$ or $x \geq 2 x-4$

6. $4(g-3)+2<6$ and $7 g>3(2 g-1)$

5. $d-3<6 d+12<2 d+32$

7. $3 a+2 \geq 5$ or $7+3 a<2(a+3)$

