DATE

Student Edition

Pages 271-277

NAME.

5-3

Study Guide

Equations as Relations

An equation in two variables describes a relation. It is often easier to determine the solution of such an equation by solving for one of the variables.

Example: Solve 3y + 2x = 10 if the domain is $\{-7, -1, 8\}$.

First solve for y in terms of x.

$$3y + 2x = 10$$

$$3y = 10 - 2x$$

$$y = \frac{10 - 2x}{3}$$

Then substitute values of *x*.

x	$\frac{10-2x}{3}$	у	(<i>x, y</i>)
-7	$\frac{10-2(-7)}{3}$	8	(-7, 8)
-1	$\frac{10-2(-1)}{3}$	4	(-1, 4)
8	<u>10 - 2(8)</u> <u>3</u>	-2	(8, -2)

Which ordered pairs are solutions of each equation?

1. y = 3x + 1 **a.** (0, 1) **b.** $\left(\frac{1}{3}, 2\right)$ **c.** $\left(-1, -\frac{2}{3}\right)$ **d.** (-1, -2) **2.** 2a = 5 - b **a.** (5, 0) **b.** (5, -5) **c.** $\left(\frac{5}{2}, 0\right)$ **d.** (1, -3)

Solve each equation if the domain is $\{-4, -2, 0, 2, 4\}$. 3. x + y = 44. y = -4x - 65. 5a - 3b = 15

6.
$$3x - 5y = 8$$
 7. $6x + 3y = 18$ **8.** $4x + 8 = 6y$