\qquad

Study Guide

Writing Equations From Patterns

You can find equations from relations. Suppose you purchased a number of packages of blank cassette tapes. If each package contained three tapes, you could make a chart to show the relationship between the number of packages of blank cassette tapes and the number of tapes purchased. Use x for the number of packages and y for the number of tapes.

x	1	2	3	4	5	6
y	3	6	9	12	15	18

This relationship can also be shown as an equation. Since y is always three times x, the equation is $y=3 x$. Another way to discover this relationship is to study the difference between successive values of x and y.

\boldsymbol{x}	1	2	3	4	5	6
y	3	6	9	12	15	18

This suggests the relation $y=3 x$.
Write an equation for each relation. Then complete each chart.
1.

x	-1	0	1	2	3	4
\boldsymbol{y}	-2	2	6			

2.

\boldsymbol{x}	-2	-1	0	1	2	3
\boldsymbol{y}	10	7	4			

3.

\boldsymbol{x}	-4	-3	-2	-1	0	1
\boldsymbol{y}	$\frac{5}{2}$	$\frac{9}{4}$	2			

4.

x	0	1	2	3	4	5
y	3	$\frac{12}{5}$	$\frac{9}{5}$			

5. $\left\{(-10,-5),(-4,-2),(0,0),(2,1),\left(5, \frac{5}{2}\right)\right\}$
6. $\{(-3,-10),(-1,-4),(0,-1),(2,5),(4,11)\}$
