Study Guide

Student Edition Pages 346–353

Writing Linear Equations in Slope-Intercept Form

The *x*-coordinate of the point where a line crosses the *x*-axis is called the *x*-intercept. Similarly, the *y*-coordinate of the point where the line crosses the *y*-axis is called the *y*-intercept.

Slope-Intercept Form of a Linear Equation

Given the slope *m* and the *y*-intercept *b* of a line, the slope-intercept form of an equation of the line is

$$y = mx + b$$
.

If an equation is given in standard form Ax + By = C and B is not zero, the slope of the line is $-\frac{A}{B}$ and the y-intercept is $\frac{C}{B}$. The x-intercept is $\frac{C}{A}$ where $A \neq 0$.

Example: Find the *x*- and *y*-intercepts of the graph of 5x - 2y = 10. Then write the equation in slope-intercept form.

Since
$$A = 5$$
, $B = -2$, and $C = 10$,
 $\frac{C}{A} = \frac{10}{5}$ $\frac{C}{B} = \frac{10}{-2}$ $m = -\frac{A}{B}$
 $= 2$ $= -5$ $= \frac{5}{2}$

Thus, the *x*-intercept is 2, and the *y*-intercept is -5. The equation of the line in slope-intercept form is $y = \frac{5}{2}x - 5$.

Find the x- and y-intercepts of the graph of each equation.

1.
$$5x + 4y = 20$$

2.
$$2x - 5y = -7$$

3.
$$4x - 8y = 10$$

4.
$$9x + y = -1$$

Write an equation in slope-intercept form of a line with the given slope and y-intercept. Then write the equation in standard form.

5.
$$m = 6, b = 10$$

6.
$$m = 4$$
, $b = 0$

7.
$$m = -1, b = 3$$

8.
$$m = 2, b = -3$$

Find the slope and y-intercept of the graph of each equation. Then write each equation in slope-intercept form.

9.
$$0.2x + 0.5y = 1.6$$

10.
$$3x + 7y = 10$$

11.
$$6x - y = 9$$

12.
$$14x - 21y = 7$$