\qquad

Study Guide

Slope

The ratio of rise to run is called slope.
The slope of a line describes its steepness, or rate of change.

On a coordinate plane, a line extending from lower left to upper right has a positive slope. A line extending from upper left to lower right has a negative slope. The slope of a horizontal line is zero. A vertical line has no slope.

The slope of a nonvertical line can be determined from the coordinates of any two points on the line.

Definition of Slope

The slope m of a line is the ratio of the change in the y-coordinates to the corresponding change in the x-coordinates.

$$
\text { Slope }=\frac{\text { change in } y}{\text { change in } x} \text { or } m=\frac{\text { change in } y}{\text { change in } x}
$$

Determining Slope Given Two Points

Given the coordinates of two points, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, on a line, the slope m can be found as follows:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \text { where } x_{1} \neq x_{2} .
$$

Example: Determine the slope of the line that passes through

$$
(-1,5) \text { and }(4,-2)
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{-2-5}{4-(-1)}
$$

$$
=\frac{-7}{5}=-\frac{7}{5}
$$

Determine the slope of the line that passes through each pair of points.

1. $(2,1),(8,9)$
2. $(4,9),(1,6)$
3. $(7,-8),(14,-6)$
4. $(-10,7),(-20,8)$
5. $(3,11),(-12,18)$
6. $(-4,-1),(-2,-5)$

Determine the value of r so the line that passes through each pair of points has the given slope.
7. $(10, r),(3,4), m=-\frac{2}{7}$
8. $(-1,-3),(7, r), m=\frac{3}{4}$
9. $(-2, r),(10,4)$, $m=-\frac{1}{2}$
10. $(12, r),(r, 6), m=2$
11. $(6,8),(r,-2), m=-3$
12. $(r, 9),(7,5), m=6$

